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Schrödinger equation solutions for the central field
power potential energy

I. V (r) = V0(r/a0)
2ν−2, ν � 1
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The solution of a generalized non-relativistic Schrödinger equation with radial potential
energyV (r) = V0(r/a0)

2ν−2 is presented. After reviewing the general properties of the radial
ordinary differential equation, power series solutions are developed. The Green’s function is
constructed, its trace and the trace of its first iteration are calculated, and the ability of the
traces to provide upper and lower bounds for the ground eigenvalue is examined. In addition,
WKB-like solutions for the eigenvalues and eigenfunctions are derived. The approximation
method yields valid eigenvalues for large quantum numbers (Rydberg states).
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1. Introduction

The central field problem which has the potential energyV (r) = V0(r/a0)
2ν−2,

ν � 1 andr ∈ [0,∞), gives the generalized Schrödinger equation:

d2

dy2
S(ν)σ (λ; y) +

[
λ2− y2ν−2− σ

2− 1/4

y2

]
S(ν)σ (λ; y) = 0, y ∈ [0,∞), (1.1)

whereS(r) = rR(r), y = αr, (αa0)
2ν = (2µa2

0/h̄
2)V0, andλ2 = (ε/V0)(αa0)

2ν−2.
R(r) is the central field radial function wherer is the distance separating the two parti-
cles,µ is the reduced mass of the two-particle system,ε is the energy and it is greater
than zero,V0 is an arbitrary constant used to set the potential energy scale, anda0 may be
taken as the Bohr radius or other appropriate reference distance for the problem at hand.
For purposes of the discussion,σ 2 � 1/4 only so that the limit of the pseudo-potential
energy in (1.1) goes to 0 or∞ asy approaches zero guaranteeing quantized stationary
states. The boundary conditions, which complete the quantum mechanical differential
system, areS(ν)σ (λ;0) = 0 andSνσ (λ;∞) = 0. S(ν)σ (λ; y) is compatible with the bound-
ary conditions for particular values ofλ only. In this paper, solutions of equation (1.1),
compatible with the boundary conditions, will be designated as eigenfunctions and their
values ofλ will be called eigenvalues to avoid confusing them with general solutions
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382 P.C. McKinney / Schrödinger equation for central field. I

which have the form of eigenfunction problems.λ will be designated asλn, for simplic-
ity, or λ(ν, σ, n), n ∈ {0} ∪ N. Equation (1.1) has not only numerical solutions, but also
exact analytical eigenfunctions and eigenvalues although standard lists of such solutions,
such as Polyanin and Zaitsev [1], do not include it.

For three-dimensional quantum problems,σ = l∗ + 1/2, wherel∗ is the azimuthal
or orbital angular momentum quantum number; for two-dimensional quantum problems,
σ = m, wherem is the magnetic quantum number (S(y) = y1/2R(y), R(y) is the radial
function); and for one-dimensional quantum problems,σ 2 = 1/4 (the potential energy
contains the absolute value ofy, if the problem calls fory to vary over the interval
(−∞,∞)).

Equation (1.1) has several solutions for particular values ofν, which help in the
analysis of the general problem, and they are expressed in terms of well-known func-
tions:

(a) Whenν = 1, the solutions of equation (1.1) are

λ2 > 1: S
(1)
±σ (λ; y) = y1/2J±σ

(√
λ2− 1y

)
,

λ2 = 1: S(1)σ (1; y) = yσ+1/2, S
(1)
−σ (1; y) = y−σ+1/2,

λ2 < 1: S
(1)
±σ (λ; y) = y1/2I±σ

(√
1− λ2y

)
or

S(1)σ (λ; y) = y1/2Kσ
(√

1− λ2y
)
,

(1.2)

where theI ’s, J ’s, andK ’s are various Bessel functions [2,3] (the defini-
tions of Bessel functions are taken from [2]). The solutions are not quantized.
Whenλ2 > 1, the solutions have a countable but infinite number of zeroes in
y ∈ [0,∞); whenλ2 � 1, the solutions have no more than one zero on[0,∞).
Whenσ = l∗ + 1/2 andλ2 > 1, the problem is equivalent to an unbound
rotating two-particle system.

(b) Whenν = 2, the eigenfunctions areS(2)σ (λn; y) = yσ+1/2e−(1/2)y2
L(σ)n (y

2),
whereL(σ)n (y

2) is a Laguerre polynomial [3], and the eigenvalues are

λ2(2, σ ;n) = 4n+ 2σ + 2, n ∈ {0} ∪ N. (1.3)

(The eigenfunctions are not normalized.) Forσ = l∗ + 1/2, we obtain the
spherical harmonic oscillator problem.

(c) Whenν = ∞, the eigenfunctions are

0� y < 1: S(∞)σ (λn; y) = y1/2Jσ (λny),

1� y <∞: S(∞)σ (λn; y) = 0.
(1.4)

(The eigenfunctions are not normalized.) Sincey2ν−2 is discontinuous at
y = 1, continuity of the eigenfunctions’s derivative is lost; but the eigenval-
ues are determined by the remaining continuity of the eigenfunctions aty = 1,
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i.e., Jσ (λn) = 0, therefore, the eigenvalues,λ(∞, σ, n), n ∈ {0} ∪ N, are the
zeroes of theσ th Bessel function. To good approximation for largen,

λ(∞, σ ;n) ≈
(
n+ σ

2
+ 3

4

)
π. (1.5)

Forσ = l∗ + 1/2, the particle-in-a-spherical-box problem is generated.

(d) Whenσ 2 = 1/4 andν = 3/2, the eigenfunctions are the Airy functions [2,3],
which are linear combinations of Bessel functions. Forσ = −(1/2), the even
eigenvalues are obtained from the equation

J2/3

(
2

3
λ3/2
n

)
= J−2/3

(
2

3
λ3/2
n

)
;

and, forσ = 1/2, the odd eigenvalues are given by

J1/3

(
2

3
λ3/2
n

)
= −J−1/3

(
2

3
λ3/2
n

)
.

In both cases,n ∈ {0}∪N. The quantum mechanical problem describes a parti-
cle moving in a one-dimensional constant force field which has a discontinuous
upward step aty = 0.

Salter and others (see [4, and references therein]) have discussed equation (1.1)
whenσ 2 = 1/4 because it allows a study of the changing energy levels asν varies
continuously from 2 (the one-dimensional harmonic oscillator problem) to infinity (the
particle-on-a-line problem), both classic problems studied in all introductory quantum
mechanics courses. Other authors have been interested in the one-dimensional prob-
lem as a model for potential energies in important problems of physics; for example,
Yukalova and Yukalov [5]. Titchmarsh [6] has carefully discussed the approximate
eigenvalues of equation (1.1) whenσ 2 = 1/4. By looking at the three-dimensional
central field problem with generalizedσ , the same variation inν may be studied, but a
better understanding of the eigenfunctions is obtained because of their intimate connec-
tion with the well-known Bessel functions.

Further inspection of equation (1.1) shows that wheny is close to zero,y2ν−2� λ2,

S(ν)σ (λ; y) ≈ y1/2Jσ (λy),

Jσ (λy) are ordinary Bessel functions, and wheny is much greater than zero for eigen-
functions, i.e.,y2ν−2� λ2,

S(ν)σ (λ; y) ≈ y1/2Kσ/ν

(
yν

ν

)
,

Kσ/ν(y
ν/ν) are the Bessel functions of purely imaginary argument of the second kind

known as Macdonald functions, which approach zero asy becomes infinite.
It was Salter’s goal to use the problem as a fertile field for beginning theorists to

investigate the mathematical subtleties of the Schrödinger equation and to experience
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the fascinating numerical intricacies of working with ordinary differential equations.
Salter’s work is extended and generalized in this paper. Rather than investigate numer-
ical results only, it is better to give students an opportunity to learn more about the
properties of higher transcendental functions; therefore, an investigation of the radial
equation’s mathematical properties is pursued. Thus, topics discussed in this paper are:
the general properties of the differential equation; the use of the Frobenius method to
generate the double infinite series expansion of the differential equation’s general so-
lution (these solutions are absolutely and uniformly convergent); the construction of
the Green’s function which gives an integral equation solution for the eigenfunctions of
equation (1.1); the use of the Green’s function and its first iteration to obtain upper and
lower bounds for the lowest eigenvalue; and the application of a modified WKB-method
to obtain approximate solutions for the eigenvalues and eigenfunctions of the differential
equation.

2. General properties of the differential equation [7]

2.1. If we letf (y) = −λ2+y2ν−2+(σ 2−1/4)/y2, whereσ 2 > 1/4, it has a minimum
at

ymin =
[
σ 2− 1/4

ν − 1

]1/2ν

(2.1.1)

and its value aty = ymin is f (ymin) = −λ2 + νy2ν−2
min . If λ2 > νy2ν−2

min , f (y) will have
zeroes aty = a andy = b such thata < ymin < b. For givenλ, ν, andσ , b can be
calculated from the continued fraction generated by the equation

b2ν =
[

λ2

1+ (σ 2− 1/4)/b2ν

]ν/(ν−1)

(2.1.2)

and, onceb is known, thena/b can be obtained from the equation

(
a

b

)2[1− (a/b)2ν−2

1− (a/b)
]
= σ

2− 1/4

b2ν
, (2.1.3)

which arises from the fact thatf (a) andf (b) are both equal to zero. The continued
fraction converges rapidly. Nowa can be calculated directly from the ratioa/b. In
general, √

σ 2− 1/4

λ
< a < ymin < b < λ

1/(ν−1).

For 0� y < a andb < y < ∞, f (y) > 0 and the solutions of equation (1.1) are
non-oscillatory and grow exponentially; fora < y < b, f (y) < 0 and the solutions of
equation (1.1) are oscillatory (see [7, p. 237]).
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2.2. Equation (1.1) gives

lim
y→∞

S ′′(y)
S(y)

= ∞
directly. Two further forms of equation (1.1) are helpful in describing the properties
of S(y):

d

dy

[
S(y)S ′(y)

] = [S ′(y)]2+ f (y)S2(y), (2.2.1)

and

d

dy

[
S ′(y)
S(y)

]
= f (y)−

[
S ′(y)
S(y)

]2

. (2.2.2)

When 0� y < a and b < y < ∞, S(y)S ′(y) is an increasing function ofy (see
equation (2.2.1)) and, therefore,S2(y) is concave upward. As a result,S(y)S ′(y) has
at most one zero in these intervals. In the interval 0� y < a, the zero will be set at
S(0) = 0 so that the boundary condition of the quantum problem is satisfied;S(y)S ′(y)
will have no other zeroes in the interval. Ifb < β <∞ andS(β) = 0 (β is the greatest
root ofS(y)), S(y)S ′(y) is less than zero to the left ofβ and greater than zero to the right
of β.

Whena < y < b, S ′(y)/S(y) has discontinuities at the roots ofS(y); it is a de-
creasing function ofy and ln|S(y)| is concave downward. Ifb < β <∞ andS(β) = 0,
then

lim
y→β−

S ′(y)
S(y)

= −∞ and lim
y→β+

S ′(y)
S(y)

= ∞;

furthermore,

lim
y→β

d

dy

[
S ′(y)
S(y)

]
= −∞

from both sides of the discontinuity. Asβ becomes larger and larger without limit, we
obtain

lim
y→∞

S ′(y)
S(y)

= −∞.
Whenβ is the largest root ofS(y), regardless if it is greater or smaller thanb but

less than infinity,S ′(y)/S(y) must enter the region where

d

dy

[
S ′(y)
S(y)

]
> 0 for y ∈ (y0,∞), y0 > β,

and, as a result, it can be shown [8] that

lim
y→∞

S ′(y)
S(y)

= ∞.
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The argument proceeds as follows:

(1) f (y), S ′(y)/S(y) and its derivative are all continuous in the intervaly ∈
(β,∞).

(2) LetN be any positive number, as large as we please, and choosey so large that
f (y) > 2N2.

(3) If S ′(y)/S(y) ever comes into the interval−N < S ′(y)/S(y) < N , then its
derivative will be greater thanN2.

(4) As a result,S ′(y)/S(y) will increase beyondN and will not return because it
is continuous and its derivative is greater than zero when it equalsN .

(5) Therefore, a numbery′′ exists such thatS ′(y)/S(y) > N for everyy > y′′,
which means that

lim
y→∞

S ′(y)
S(y)

= ∞.
From these results, it follows that

lim
y→∞S(y)S

′(y) = lim
y→∞S

2(y) lim
y→∞

S ′(y)
S(y)

= ∞.

(The proof only requiresS2(y) > 0, which is true whenS(y) is a function of real
variables, the important case for the quantum mechanical problem.)

Also it follows that

lim
y→∞

[
S ′(y)

]2 = lim
y→∞

S ′(y)
S(y)

lim
y→∞ S(y)S

′(y) = ∞
when the largest zero ofS(y) occurs aty = β, β < ∞. We may also infer from these
conditions that limy→∞ S2(y) = ∞: in this regionS2(y) > [S ′(y)]2/f (y) and, using
L’Hospital’s rule, it may be shown that limy→∞[S ′(y)]2/f (y) = ∞.

If the largest zero ofS(y) occurs asy approaches infinity, then we may conclude,
using the mean value theorem and the fact thatS ′(y) �= 0 in y ∈ (b,∞), that, if
limy→∞ S(y) = 0, then limy→∞ S ′(y) = 0.

2.3. All oscillating solutions of equation (1.1) must satisfy the inequality

λ2 > νy2ν−2
min . (2.3.1)

For givenλ, ν, andσ , S(y) has a finite number of zeroes because there can be no more
than one zero in the intervals 0< y < a andb < y <∞, and the distance between two
consecutive zeroes in the intervala < y < b is not less thanπ/

√−f (ymin). Continuing
to use Sturm’s comparison theories, the solutions will have no more than one zero in
a < y < b provided

λ2 <
π2

(b − a)2 + νy
2ν−2
min , (2.3.2)



P.C. McKinney / Schrödinger equation for central field. I 387

and they will have at leastm zeroes ina < y < b provided that

λ2 >
m2π2

(b − a)2 + νy
2ν−2
min , m ∈ N. (2.3.3)

The second result follows from a consideration of the solutions in the interval
a < a′ < y < b′ < b and then taking advantage of appropriate inequalities.

2.4. From the Sonine–Polya theorem [9], it is clear that the sequence of maxima
of S2(y) decreases in magnitude asy increases wheny < ymin and increases for in-
creasingy if ymin < y.

2.5. Two independent solutions of equation (1.1) areS(ν)σ (λ; y) andS(ν)−σ (λ; y). (See
their power series definitions in section 3, equation (3.5).) Their Wronskian is

W
[
Sσ (y), S−σ (y)

] = − sin(σπ), (2.5.1)

so that whenσ is an integer, the two solutions are no longer independent. A more general
second solution may be defined as follows:

T (ν)σ (λ; y) = S
(ν)
−σ (λ; y) − S(ν)σ (λ; y) cos(σπ)

sin(σπ)
, (2.5.2)

where the Wronskian is

W
[
Sσ (y), Tσ (y)

] = −1 (2.5.3)

making these two solutions independent for all values ofσ . The zeroes of the two
independent solutions separate one another. Furthermore, limy→∞ T (y) = ±∞ and
limy→∞ T ′(y) = ±∞ for all values ofλ (see section 2.2).

In general, asy approaches infinity, all the solutions of the differential equation
become larger or smaller without limit, but, for particular values ofλ (when λ be-
comes an eigenvalue), the solutions approach zero asy approaches infinity. These are
the solutions, which satisfy both boundary conditions required by the quantum prob-
lem, S(0) = 0 andS(∞) = 0. They may be made square-integrable on[0,∞) and
are eigenfunctions. Asλ increases in magnitude starting from an eigenvalue, the zero
moves toward the left and eventually into the intervala < y < b. Subsequently, with
ever increasingλ, a new zero will appear aty = ∞, giving a new eigenfunction, and
the process will be repeated.S−σ (y) andTσ (y) display the same property of zeroes
but for different sets of lambdas, of course. However, neither function generates a set
of quantum mechanical eigenvalues because both functions increase without limit asy

approaches zero.
A more insightful way of looking at the problem [8] is to define the following

particular solution of equation (1.1):

Uσ(y) =
[
S2
σ (y)+ T 2

σ (y)
]1/2

sin
(
φ(∞)− φ(y)), (2.5.4)
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where

tanφ(y) = Sσ (y)
Tσ (y)

and lim
y→0

φ(y) = 0,

without loss of generality;φ(∞) is constant with respect toy. Alternate expressions for
Uσ(y) taking advantage of the properties of the sine function are

Uσ(y) = sinφ(∞)Tσ (y)− cosφ(∞)Sσ (y)
or

Uσ(y) = cosφ(∞)Tσ (y)
[
tanφ(∞)− tanφ(y)

]
.

The second particular solution is

Vσ (y) =
[
S2
σ (y)+ T 2

σ (y)
]1/2

cos
(
φ(∞)− φ(y)). (2.5.5)

By taking the derivative of tanφ(y) with respect toy and using the Wronskian (2.5.3),
it is easily shown that

dφ(y)

dy
= 1

[S2
σ (y)+ T 2

σ (y)]
> 0, (2.5.6)

therefore, the derivative is a continuous function because the denominator on the right-
hand side of the expression above is never equal to zero.φ(y) is an increasing, continu-
ous function ofy. Also,

lim
y→0

dφ(y)

dy
= 0 and lim

y→∞
dφ(y)

dy
= 0. (2.5.7)

Furthermore, becauseUσ(y) has a finite number of zeroes,φ(∞) must be bounded.
Now it follows straightforwardly, using the third expression for (2.5.4) and L’Hospital’s
rule, that

lim
y→∞Uσ(y) = cosφ(∞) lim

y→∞
1

T ′(y)
and lim

y→∞U
′
σ (y) = − cosφ(∞) lim

y→∞
1

Tσ (y)
,

and therefore,

lim
y→∞Uσ(y) = 0 and lim

y→∞U
′
σ (y) = 0. (2.5.8)

Using a similar argument, the limits of the second particular function asy approaches
infinity are

lim
y→∞Vσ (y) = ±∞ and lim

y→∞V
′
σ (y) = ±∞. (2.5.9)

These limits are valid for all values ofλ. By defining these functions, we have lost the
general properties limy→0Uσ(y) = 0 and limy→0U

′
σ (y) = 0 except for particular values

of λ, the eigenvalues; however, the advantage gained is that we can study the limits as
y approaches zero much more easily than the limits asy approaches infinity; and, when
these limits are true, the quantum eigenvalues have been determined.
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Taking the partial derivative of equation (1.1) with respect toλ2, holding σ and
ν constant, and then integrating over(y,∞) yields

−Uσ(y)∂U
′
σ (y)

∂(λ2)
+ U ′σ (y)

∂Uσ (y)

∂(λ2)
+
∫ ∞
y

U2
σ (z)dz = 0, (2.5.10)

whereU ′σ (y) = ∂Uσ(y)/∂y. If y = ρ gives a zero ofUσ(y), i.e.,Uσ(ρ) = 0 (the Greek
letterρ is used for “root”), then

U ′σ (ρ)
∂Uσ(ρ)

∂(λ2)
= −

∫ ∞
ρ

U2
σ (z)dz (2.5.11)

and, also, this requiresφ(∞) = φ(ρ)+ kπ , wherek ∈ {0,1,2, . . . , kmax}. The follow-
ing three results may be derived:

U ′σ (ρ)=
−(−1)k

[S2
σ (ρ)+ T 2

σ (ρ)]1/2
,

∂Uσ (ρ)

∂φ(ρ)
=−(−1)k

[
S2
σ (ρ)+ T 2

σ (ρ)
]1/2
, (2.5.12)

∂Uσ (ρ)

∂(λ2)
= (−1)k

[
S2
σ (ρ)+ T 2

σ (ρ)
]1/2 ∫ ∞

ρ

U2
σ (z)dz.

Because

∂ρ

∂(λ2)
= −[∂Uσ(ρ)/∂(λ

2)]
[∂Uσ (ρ)/∂ρ] ,

the equations in (2.5.12) give

∂ρ

∂(λ2)
= [S2

σ (ρ)+ T 2
σ (ρ)

] ∫ ∞
ρ

U2
σ (z)dz > 0, (2.5.13)

which tells usρ is an increasing function ofλ2 and the zeroes ofUσ(y) enter the interval
[0,∞) at the origin, then move to the right asλ2 increases. Furthermore,

∂φ(ρ)

∂(λ2)
= ∂φ(∞)

∂(λ2)
=
∫ ∞
ρ

U2
σ (z)dz > 0, (2.5.14)

meaning that bothφ(ρ) andφ(∞) are increasing functions ofλ2. If φ(∞) < N ,N ∈ R,
thenUσ(y) has a finite number of zeroes; more specifically, if

nπ < φ(∞) � (n+ 1)π, n ∈ {0} ∪N, (2.5.15)

thenUσ(y) hasn zeroes in[0,∞) as well as a zero at infinity and a possible zero at the
origin for someλ. In the limit asφ(∞) approaches(n+ 1)π,Uσ(y) becomes an eigen-
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function, U(ν)σ (λn; y), such that the limit of the function and its derivative both equal
zero asy approaches zero, and the eigenfunction hasn zeroes in the intervala < y < b
as well as two others, one aty = 0 and a second aty = ∞.

2.6. The functionUσ(y) can be used to demonstrate the convergence of the improper
integrals associated with equation (1.1), especially the integrals of the eigenfunctions.
Integrating equation (2.2.1) over[c, d] and then taking the limit asd →∞, gives

−Uσ(c)U ′σ (c) =
∫ ∞
c

{[
U ′σ (y)

]2− [λ2− y2ν−2− σ
2− 1/4

y2

]
U2
σ (y)

}
dy, (2.6.1)

and becauseUσ(c)U ′σ (c) exists, the improper integral converges. In the limit asλ→ ωn,
Uσ(y) becomes an eigenfunction whereU(ν)σ (ωn; c) = 0. Asc approaches zero,ωn be-
comesλn andUνσ (λn; y) becomesSνσ (λn; y).

Once the limit has been taken, it is straightforward to observe that

∫ ∞
0

[
dS(ν)σ (λn; y)

dy

]2

dy,

∫ ∞
b

[
−λ2

n + y2ν−2+ σ
2− 1/4

y2

][
S(ν)σ (λn; y)

]2
dy, (2.6.2)

∫ a

0

[
−λ2

n + y2ν−2+ σ
2− 1/4

y2

][
S(ν)σ (λn; y)

]2
dy

are all positive integrals, and less than∫ b

a

[
λ2
n − y2ν−2− σ

2− 1/4

y2

][
S(ν)σ (λn; y)

]2
dy,

which is positive and exists (it is the sum of the first three integrals); therefore, the
integrals(2.6.2) converge and exist and, as a result, the following integrals converge:

∫ ∞
0

[
dS(ν)σ (λn; y)

dy

]2

dy and
∫ ∞

0

[
λ2
n − y2ν−2− σ

2− 1/4

y2

][
S(ν)σ (λn; y)

]2
dy.

(2.6.3)

From the second integral in equations (2.6.3), we see that
∫∞

0 [S(ν)σ (λn; y)]2 dy also con-
verges.

2.7. The variation of the eigenvalues with respect toν holdingσ constant is found by
taking the partial derivative with respect toν of equation (1.1), showing that

∂

∂y

[
Uσ(y)

∂

∂ν
U ′σ (y)− U ′σ (y)

∂

∂ν
Uσ (y)

]
+
[
∂λ2

∂ν
− 2y2ν−2 ln(y)

]
U2
σ (y) = 0. (2.7.1)
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Integrating (2.7.1) over the intervaly ∈ [0,∞) and taking the appropriate limits gives

∂

∂ν
λ2
n = 2

∫ ∞
0
y2ν−2 ln(y)

[
S
(ν)
σ (λn; y)

]2
dy, (2.7.2)

whereS(ν)σ (λn; y) is the normalized eigenfunction. The quantityy2ν−2 ln(y) is negative
or zero on[0,1] and is positive or zero on[1,∞). Therefore, the integral needs to be
divided into two parts, i.e.,

∂

∂ν
λ2
n = 2

∫ 1

0
y2ν−2 ln(y)

[
S
(ν)
σ (λn; y)

]2
dy + 2

∫ ∞
1
y2ν−2 ln(y)

[
S
(ν)
σ (λn; y)

]2
dy.

(2.7.3)

If the absolute value of the first integral is greater than the value of the second, then
∂λ2

n/∂ν < 0 andλ2
n is a decreasing function ofν. If the absolute value of the first

integral is less than the value of the second, then∂λ2
n/∂ν > 0 andλ2

n is an increasing
function ofν. The absolute value of the first integral is less than 1/(2ν − 1)2, therefore,

∂

∂ν

[
λ2
n −

1

2ν − 1

]
> 0 (2.7.4)

andλ2
n − 1/(2ν − 1) is an increasing function ofν. Study of the limits, using equa-

tion (2.7.3), shows that

lim
ν→1

∂

∂ν
λ2
n = ∞ and lim

ν→∞
∂

∂ν
λ2
n = 0. (2.7.5)

As ν → 1, we obtain the first limit above because the first integral in equation (2.7.3)
is bounded, the second is not. From the same equation, asν → ∞, the second limit
is obtained because both integrals become zero; the first becausey2ν−2 ln(y) is zero
everywhere on[0,1] and the second because the eigenfunction is zero on[1,∞) (see
equation (1.4)). Also, limν→1 λ

2
n = 1, n ∈ {0} ∪ N. A limit greater than or less than 1

gives rise to contradictions with respect to the changing number of eigenfunction zeroes
asν → 1 when comparing the solutions of equation (1.1).

2.8. By comparing equation (1.1) for an eigenfunction to that of a general solution
whereλ has been replaced byξ , the characteristic function aty = c is

F(ξ ; c) = α′U(ν)σ (ξ ; c)− αU ′(ν)σ (ξ ; c), (2.8.1)

whereα′ andα are constants. In the limit asξ approachesξn, F (ξn; c) = 0. It can
be shown that∂F (ξ ; c)/∂(ξ2) is not equal to zero whenξ equalsξn; therefore,ξn is a
simple root of the characteristic equation. Asc approaches zero,ξn becomesλn, making
λn a simple root, also.



392 P.C. McKinney / Schrödinger equation for central field. I

3. Series solution of equation (1.1)

Let S(ν)σ (λ; y) = (πλy/2)1/2
∑∞

j=0 fj (y)(y
ν/ν)2j , take the appropriate derivatives

and substitute into equation (1.1). The following differential equation is obtained for
fj+1(y):

y2 d2

dy2
fj+1(y)+

[
2
(
2(j + 1)ν

) + 1
]
y

d

dy
fj+1(y)

+ [(2(j + 1)ν
)2+ (λy)2− σ 2]fj+1(y) = 4ν2fj (y), j ∈ {0} ∪ N. (3.1)

If

fj (y) =
∞∑
k=0

(−1)k

k!
cj,k(σ, ν)

/(σ + k + 1)
(λy/2)σ+2k, j ∈ {0} ∪ N,

such thatf0(y) = Jσ (λy) (/(x) is the Gamma function [3]), then, on substitution into
the preceding equation, the following recursion relation is obtained:

[
(j + 1)ν + k + 1

][
(j + 1)ν + σ + k + 1

]cj+1,k+1(σ, ν)

cj+1,0(σ, ν)

= (k + 1)(σ + k + 1)
cj+1,k(σ, ν)

cj+1,0(σ, ν)

+ [(j + 1)ν
][
(j + 1)ν + σ ]cj,k+1(σ, ν)

cj,0(σ, ν)
, j, k ∈ {0} ∪ N, (3.2)

where

cj,0(σ, ν) = 1

j !
1

((σ/ν)+ 1)j
c0,0(σ, ν), j ∈ {0} ∪ N.

((x)j is the Pochhammer symbol [3]; a square bracket is also used for the symbol in the
following equations.) It is possible to solve explicitly for the coefficients:

c0,k(σ, ν)

c0,0(σ, ν)
= 1, k ∈ {0} ∪ N; and

cj+1,k(σ, ν)

cj+1,0(σ, ν)
= k!(σ + 1)k
[(j + 1)ν + σ + 1]k[(j + 1)ν + 1]k

×
k∑

nj=0

nj∑
nj−1=0

· · ·
n1∑
n0=0

j∏
l=0

[(l + 1)ν + σ ]nl [(l + 1)ν]nl
(lν + σ + 1)nl (lν + 1)nl

, j, k ∈ {0} ∪ N.

(3.3)
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Dividing through the recursion relation (3.2) byν2 and solving for the coefficients the
second time, gives the following results:

cj,0(σ, ν)

c0,0(σ, ν)
= 1, j ∈ {0} ∪ N; and

cj,k+1(σ, ν)

c0,k+1(σ, ν)
=

j !(σ
ν
+ 1

)
j[

(σ+k+1)
ν
+ 1

]
j

[
(k+1)
ν
+ 1

]
j

×
j∑

nk=0

nk∑
nk−1=0

· · ·
n1∑
n0=0

k∏
l=0

(
σ+l+1
ν

)
nl

(
l+1
ν

)
nl[

(σ+l)
ν
+ 1

]
nl

(
l
ν
+ 1

)
nl

, j, k ∈ {0} ∪ N.

(3.4)

The second form of the coefficients makes it easier to follow the change in the function
asν approaches infinity.

S
(ν)
−σ (λ; y) is also a solution of equation (1.1). The two solutions are linearly inde-

pendent so long asσ is not an integer. Whenσ is a negative integer, the second inde-
pendent solution, containing a logarithmic term, can be derived using standard methods
discussed by Ince [7]. Ifc0,0(σ, ν) = 1, then limy→0 S

(ν)

−1/2(λ; y) = 1. Finally,

S(ν)σ (λ; y) =
(
π

2
y

)1/2 ∞∑
j=0

1

j !
1

(σ/ν + 1)j

×
[ ∞∑
k=0

(−1)k

k!
1

/(σ + k + 1)

cj.k(σ, ν)

cj,0(σ, ν)

(
λy

2

)σ+2k
](
yν

2ν

)2j

(3.5)

will be taken as the canonical solution of equation (1.1). Notice thatλ has been omitted
in the first parenthesis in comparison with the trial series at the beginning of the section
in order to obtain the Wronskians (2.5.1) and (2.5.3) mentioned earlier. The series is
absolutely convergent. By manipulating the recursion relation, the inequalities

cj,k(σ, ν)

cj,0(σ, ν)
− cj,k+1(σ, ν)

cj,0(σ, ν)
� 0, j, k ∈ {0} ∪ N,

and

cj,k(σ, ν)

cj,0(σ, ν)
− cj+1,k(σ, ν)

cj+1,0(σ, ν)
� 0, j, k ∈ {0} ∪N,

are established forσ > −1. It is also true that

1� cj,k(σ, ν)
cj,0(σ, ν)

� 0, j, k ∈ {0} ∪ N, σ > −1,
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and therefore,

∣∣S(ν)σ (λ; y)∣∣ < /
(
σ

ν
+ 1

)(
π

2
y

)1/2(
yν

2ν

)−σ/ν
Iσ/ν

(
yν

ν

)
Iσ (λy).

A more straightforward method to show that thec-ratios are less than or equal to one is
to use the recursion relation and argue by induction using the rows and columns of the
matrix

cj,k(σ, ν)

cj,0(σ, ν)
.

Whenσ is replaced by−σ , the resulting series is also absolutely convergent. In this
case, if

m < σ < m+ 1, m ∈ {0} ∪ N,
and

pν < σ < (p + 1)ν, p ∈ {0} ∪ N,
then∣∣∣∣cj,k(−σ, ν)cj,0(−σ, ν)

∣∣∣∣ � A, j ∈ {0,1,2, . . . , p + 1}, k ∈ {0,1,2, . . . , m+ 1}.

A is the least upper bound of thec-ratio absolute values in the given rectangle of the
matrix. Now the recursion relation with induction allows us to show that all the other
c-ratios of the infinite matrix are less than or equal toA because the coefficients of the
c-ratios are now positive. As a result,|Sν−σ (λ; y)| is less than a product series, which is
easily shown to be absolutely convergent.

S(ν)σ (λ; y) andS(ν)−σ (λ; y) are uniformly convergent on all closed and bound subin-
tervals of(0,∞) by the Weierstrass test omittingy = 0 for the second solution.

In the limit asν → 1, the ratio of coefficients becomes

cj,k(σ,1)

cj,0(σ,1)
= (σ + 1)k
(σ + j + 1)k

and on substitution intoS(ν)σ (λ; y) yields the following functions:

1. λ2 > 1: S(1)σ (λ; y) =
(
π

2
y

)1/2
λσ

(
√
λ2− 1)σ

Jσ
(√
λ2− 1y

)
,

2. λ2 = 1: S(1)σ (λ; y) =
√
π

/(σ + 1)

(
y

2

)σ+1/2

,

3. λ2 < 1: S(1)σ (λ; y) =
(
π

2
y

)1/2
λσ

(
√

1− λ2)σ
Iσ
(√

1− λ2y
)
.

(3.6)

Except for a multiplicative constant, these functions agree with the three equations (1.2).
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Table 1
Approximate eigenvalues for the ground state,λ(ν, σ,0).

ν \ σ −0.5 0.5 1.5

2 1.0000 1.732051 2.236068
3 1.0297 1.949 2.6659
3.5 1.0499 2.022 2.801
4 1.0699 2.085 2.91
6 1.14 2.262 3.2004
8 1.193 2.2732 3.381

10 1.23238 2.459 3.5088

Table 2
Approximate eigenvalues for the first excited state,λ(ν, σ,1).

ν \ σ −0.5 0.5 1.5

2 2.236068 2.645751 3.01
3 2.73 3.4118 4.007
4 3.012 3.863 4.607
6 3.338 4.381 5.304
8 3.537 4.676 5.701

10 3.6744 4.876 5.965

Antai Cen and Michael Schneider, summer research interns at Wabash Col-
lege working with me in the summers of 1994 and 1998, respectively, have written
computer programs to calculateS(ν)σ (λ; y). By searching for values ofλ requiring
limy→∞ S(ν)σ (λ; y) = 0, approximate eigenvalues of equation (1.1) have been calculated
for the ground state and the first excited state for some values ofν andσ (see tables 1
and 2).

Considering the one-dimensional problem whereσ 2 = 1/4 andV (y) = |y|2ν−2

on the interval(−∞,∞), λ(ν,−1/2,0) is the ground state,λ(ν,1/2,0), λ(ν,−1/2,1),
andλ(ν,1/2,1) are the next three excited states. The ground states forν equal 2, 3, 4,
and 8 agree with Salter’s calculations [4]. (Note that Salter’s lambda is the square of
lambda used in this paper and hisp = ν − 1.)

The solutions obtained above are analogous to the Bessel functions. It is also possi-
ble to factor out positive or negative exponential functions and then develop power series
solutions. These series are analogous to confluent hypergeometric functions. Whenσ is
a negative integer, the second solution contains a logarithmic term; this series is estab-
lished by generalizing thec-ratios, i.e., let

fj (y) =
∞∑
k=0

(−1)k

k!
cj,k(σ, ν; x)
/(σ + k + 1)

(
λy

2

)x+2k



396 P.C. McKinney / Schrödinger equation for central field. I

(compare withfj (y) at the beginning of the section), calculate thec-ratios as before,
then the second solution is

lim
x→−m

[
∂S(ν)m (λ; x, y)

∂x

]
.

One must examine two cases, first,σ/ν not a negative integer and, second,σ/ν a negative
integer. Finally, asymptotic series solutions can also be derived.

4. The Green’s function [10]

Because equation (1.1) can be solved in terms of known functions whenλ = 0,
it is easy to construct the Green’s function. Inspection of equation (1.1) shows that the
Green’s function must satisfy the partial differential equation

∂2

∂y2
G(x, y)+

[
−y2ν−2− σ

2− 1/4

y2

]
G(x, y) = −δ(x − y). (4.1)

Using Bessel functions of purely imaginary argument, we obtain

0� x � y <∞: G(x, y) = 1

ν
x1/2Iσ/ν

(
xν

ν

)
y1/2Kσ/ν

(
yν

ν

)
,

0� y � x <∞: G(x, y) = 1

ν
x1/2Kσ/ν

(
xν

ν

)
y1/2Iσ/ν

(
yν

ν

)
,

(4.2)

and the integral equation’s bilinear concomitant is equal to zero aty = 0 andy = ∞;
therefore, the Green’s function satisfies the integral equation

S(ν)σ (λ; x) = λ2
∫ ∞

0
G(x, y)S(ν)σ (λ; y)dy,

where the possible values forλ2 are the eigenvalues of equation (1.1). The trace of the
Green’s function is∫ ∞

0
G(x, x)dx =

∞∑
n=0

1

λ2
n

= (2ν)2/ν

4(σ + 1)

/
[
(σ+1)
ν
+ 1

]
/
(

1
ν
+ 1

)
/
(− 2

ν
+ 1

)
/
[
(σ−1)
ν
+ 1

]
/
(− 1

ν
+ 1

) , ν > 2. (4.3)

The first iterated kernel

G1(x, y) =
∫ ∞

0
G(x, z)G(z, y)dy
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is calculated using Meijer’sG-functions [3] and the trace of the kernel is∫ ∞
0

G1(x, x)dx

=
∞∑
n=0

1

λ4
n

=
√
π

16

ν4/ν

(σ + 1)2(σ + 2)

/
[

2
ν
(σ + 1)+ 1

]
/
(

2
ν
+ 1

)
/
[
(σ+2)
ν
+ 1

]
22σ/ν/2

(
σ
ν
+ 1

)
/
[
(σ+2)
ν
+ 1

2

] D(σ, ν),

(4.4)

where

D(σ, ν) =
∞∑
m=0

(
σ
ν
+ 1

2

)
m

[
(σ+1)
ν

]
m

[2(σ+1)
ν

]
m

(
2
ν

)
m

[
(σ+2)
ν

]
m

m!(2σ
ν
+ 1

)
m

(
σ
ν
+ 1

)
m

[
(σ+2)
ν
+ 1

2

]
m

[
(σ+1)
ν
+ 1

]
m

, ν >
4

3
.

Notice that whenν = 2, the trace of the first iterated Green’s function becomes∫ ∞
0
G1(x, x)dx =

∞∑
m=0

1

(4m+ 2σ + 2)2
,

where the denominators in the sum are just the squares of the eigenvalues (a happy but
unexpected occurrence!).

From the traces of the Green’s function,T = ∫∞0 G(x, x)dx, and the first iteration
of the Green’s function,T1 =

∫∞
0 G1(x, x)dx, an upper and lower bound for the lowest

eigenvalue is obtained. By inspection of the infinite series for the traces given above and
expressed in terms of reciprocal powers of the eigenvalues, it can be readily shown that

1

T
<

1√
T1
< · · · < λ2

0 < · · · <
T

T1
. (4.5)

Further iteration will improve the bounds. It will also allow bounds to be assigned to
higher eigenvalues. The calculation of further iterations of the Green’s function looks
promising but tedious.

For the one-dimensional case,σ = ±1/2, representing the even and odd states
respectively of the symmetric potential energy function, it is possible to calculate the
bounds for the ground state and first excited state directly from the inequalities for
tracesT andT1.

5. The modified WKB approximation [11]

Ordinarily the WKB method uses sines and cosines to approximate oscillating re-
gions of differential equations and hyperbolic functions outside these regions. The turn-
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ing points are taken as the points where the solution passes from an oscillating into an
exponential region. At these points, the WKB solution is undefined. However, for equa-
tion (1.1) it is better to use Bessel functions for a WKB-like solution because they can
be chosen so that they will become the correct solutions aty near 0 andy large. Further-
more, ify = λ1/(ν−1) is taken as the point where the WKB-like solution is undefined, the
properties of Bessel functions again offer advantages for an approximate solution.

First, let us examine an approximate solution of equation (1.1) which is bounded
around the pointy = λ1/(ν−1). Expanding

(λ2− y2ν−2)− σ
2− 1/4

y2

in the neighborhood ofy = λ1/(ν−1) gives

(2ν − 2)λ2

[
− σ 2− 1/4

(2ν − 2)λ2ν/(ν−1)
+
(

1− σ 2− 1/4

(ν − 1)λ2ν/(ν−1)

)(
1− y

λ1/(ν−1)

)]
(5.1)

as the first two terms of the power series expansion in(1− y/λ1/(ν−1)). If

σ 2− 1/4

(ν − 1)λ2ν/(ν−1)
� 1,

then to good approximation

(
λ2− y2ν−2)− σ 2− 1/4

y2
≈ (2ν − 2)λ2

(
1− y

λ1/(ν−1)

)
,

and equation (1.1) becomes

d2

dy2
S(y) + (2ν − 2)λ2

(
1− y

λ1/(ν−1)

)
S(y) = 0 (5.2)

in this neighborhood. The solutions of equation (5.2) are Airy’s integrals:

y < λ1/(ν−1): S(y) =
∫ ∞

0
cos

[
t3

3
− 1

α

(
1− y

λ1/(ν−1)

)
t

]
dt

and

y > λ1/(ν−1): S(y) =
∫ ∞

0
cos

[
t3

3
+ 1

α

(
y

λ1/(ν−1)
− 1

)
t

]
dt,

where

α3 = 1

(2ν − 2)λ2ν/(ν−1)
.



P.C. McKinney / Schrödinger equation for central field. I 399

Airy’s integrals can be expressed in terms of Bessel functions:

y < λ1/(ν−1): S(y)= π
3

[
1

α

(
1− y

λ1/(ν−1)

)]1/2

×
{
J−1/3

[
2

3α3/2

(
1− y

λ1/(ν−1)

)3/2]

+ J1/3

[
2

3α3/2

(
1− y

λ1/(ν−1)

)3/2]}
, (5.3a)

y > λ1/(ν−1): S(y)= 1

31/2

[
1

α

(
y

λ1/(ν−1)
− 1

)]1/2

K1/3

[
2

3α3/2

(
y

λ1/(ν−1)
− 1

)3/2]
.

(5.3b)

If we defineξ ′1(y) = (λ2− y2ν−2)1/2 so thatξ1(y) =
∫ λ1/(ν−1)

y
(λ2− z2ν−2)1/2 dz and

ξ ′2(y) = (y2ν−2− λ2)1/2 so thatξ2(y) =
∫ y
λ1/(ν−1) (z

2ν−2− λ2)1/2 dz, the Airy integrals
can be rewritten as

y < λ1/(ν−1): S(y) = [λ(2ν − 2)1/2α1/2π ]1/2
2 cos(π/6)

(
π

2

ξ1(y)

ξ ′1(y)

)1/2

× [J1/3
(
ξ1(y)

)+ J−1/3
(
ξ1(y)

)]
,

y > λ1/(ν−1): S(y) = [λ(2ν − 2)1/2α1/2π ]1/2
2

(
2

π

ξ2(y)

ξ ′2(y)

)1/2

K1/3
(
ξ2(y)

)
.

(5.4)

Wheny is in the neighborhood ofλ1/(ν−1) , these more general forms ofS(y) reduce
correctly to equations (5.3). In addition, they have the advantage of allowing a determi-
nation of the asymptotic values of the Airy integrals:

y < λ1/(ν−1): S(y)→ [
λ(2ν − 2)1/2α1/2π

]1/2 1

(ξ ′1(y))1/2
cos

(
ξ1(y)− π

4

)
,

y > λ1/(ν−1): S(y)→ [λ(2ν − 2)1/2α1/2π]1/2
2

1

(ξ ′2(y))1/2
e−ξ2(y).

(5.5)

Second, Bessel functions can be used to construct an approximate solution to equa-
tion (1.1). The three fragments of the approximate solution listed below satisfy differ-
ential equations which reduce correctly to equation (1.1) asy approaches zero and asy
approaches infinity:

y → 0 : S(y) = A
(
π

2

ξ0(y)

ξ ′0(y)

)1/2

Jσ
(
ξ0(y)

)
,

whereξ ′0(y) = (λ2− y2ν−2)1/2 andξ0(y) =
∫ y

0 (λ
2− z2ν−2)1/2 dz;
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y → λ
1/(ν−1)
Left : S(y) = B

2 cos(σπ/2)

(
π

2

ξ1(y)

ξ ′1(y)

)1/2

× [Jσ (ξ1(y)
)+ J−σ (ξ1(y)

)]
,

y → λ
1/(ν−1)
Right andy →∞ : S(y) = C

(
2

π

ξ2(y)

ξ ′2(y)

)1/2

Kσ/ν
(
ξ2(y)

)
.

The fragments are connected by taking advantage of their asymptotic behavior:

y → 0 : S(y)→ A
1

(ξ ′0(y))1/2
cos

(
ξ0(y)− σπ2 −

π

4

)
,

y → λ
1/(ν−1)
Left : S(y)→ B

1

(ξ ′1(y))1/2
cos

(
ξ1(y)− π4

)
,

y → λ
1/(ν−1)
Right andy →∞ : S(y)→ C

1

(ξ ′2(y))1/2
e−ξ2(y).

The WKB-like solution is undefined aty = λ1/(ν−1) but the asymptotic values for
the second and third fragments are the same as those of the bounded approximate solu-
tion first studied (see equations (5.3)) except for a multiplicative constant, even though
the functions now depend on the subscriptσ rather than 1/3. The agreement of the as-
ymptotic values provides a method to connect the fragments of the WKB-like solution.
They join together if∫ λ1/(ν−1)

0

(
λ2− z2ν−2)1/2 dz − σπ

2
− π

2
= nπ, n ∈ {0} ∪ N, (5.6)

B = (−1)nA and C = (−1)n

2
A.

Because the WKB-like solution is not square-integrable, it is not possible to nor-
malize the eigenfunction using the standard method. Reasonable arguments for different
normalization factors may be made, but a specific value forA is not crucial for many
calculations. On integration of equation (5.6), an approximation for the eigenvalues is
obtained:

λ(ν, σ, n) =
[

/
(

1
(2ν−2) + 3

2

)
/
(

1
(2ν−2) + 1

)
/
(

3
2

)(n+ σ
2
+ 1

2

)
π

]1−1/ν

, n ∈ {0} ∪ N. (5.7)

Notice that

σ 2− 1/4

(ν − 1)[λ(ν, σ, n)]2ν/(ν−1)
= σ 2− 1/4

(ν − 1)

[
/

(
1

(2ν−2)+
3
2

)
/

(
1

(2ν−2)+1
)
/

(
3
2

)(n+ σ
2 + 1

2

)
π

]2
,
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which is less than 1 even whenn = 0 for all ν andσ . Even asν approaches one,

lim
ν→1
(ν − 1)1/2

/
(

1
2ν−2 + 3

2

)
/
(

1
2ν−2 + 1

) = 2−1/2.

The restriction for the solution in the neighborhood ofy = λ1/(ν−1) is satisfied. Notice,
also, that whenν = 2:

λ2(2, σ, n) = 4n+ 2σ + 2, n ∈ {0} ∪ N, (5.8)

which, by unexpected good fortune, is the correct value for the eigenvalues (see equa-
tion (1.3)). Forν = ∞:

λ(∞, σ, n) =
(
n+ σ

2
+ 1

2

)
π, n ∈ {0} ∪ N, (5.9)

which is a good value for then� 0 eigenvalues of the problem (see equation (1.5)); the
exact values are the zeroes of theσ th Bessel function. Equation (5.9) agrees reasonably
well with equation (1.5); therefore,λ(ν, σ, n) gives satisfactory results for large values
of n.

6. Conclusion

Although the solution of equation (1.1) is complicated, it yields to the classical
methods for the study of ordinary differential equations. The application of these meth-
ods introduces the student to their power and to their use in solving non-trivial problems.
Equation (1.1) provides good practice for studying the theory of differential equations.
It gives the student an opportunity to distinguish the eigenfunctions from the general
solutions. The eigenfunctions become more intelligible in the context of the general
solutions’ properties. The Frobenius method of using infinite series often leads to diver-
gent series. We obtain a double series, cumbersome, to be sure, but convergent. Green’s
functions are important parts of analysis because they provide information about the
eigenvalues. Being able to calculate the first iteration is a rare occurrence. It allows
us to derive upper and lower bounds for the ground state eigenvalues. The problem
also introduces students to the properties of the Bessel functions and makes them an
important part of the young theorist’s repertoire. Most important, the student gains a
comprehensive perspective for considering differential equations rather than the bits and
pieces usually supplied by textbooks.

The door is open to the construction of improved approximations forS(ν)σ (λ; y), its
eigenfunctions, and eigenvalues. In anε-neighborhood of an arbitrary value ofy, con-
fluent hypergeometric functions can be used as good approximations to the solutions of
equation (1.1). Numerical calculations can be guided by the analytical results obtained.
Better knowledge of the series solutions of equation (1.1) makes the exploration of a
host of new quantum problems more reasonable, especially power potentials in wells of
finite depth become a more profitable and practical pursuit.
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Now it will be possible to look much more carefully at the physics contained in the
problem. For example, as the problem is set up the zero of potential energy for all values
of ν is taken at the origin and we learn that∂(λ2

n)/∂ν may be positive or negative asν
increases. If equation (1.1) is modified to read

d2S(ν)σ (λ; y)
dy2

+
{[
λ2− 1

2ν − 1

]
−
[
y2ν−2− 1

2ν − 1

]
− σ

2− 1/4

y2

}
S(ν)σ (λ; y) = 0, (6.1)

we knowλ2
n − 1/(2ν − 1) is an increasing function ofν and zero of potential energy

becomes different for each value ofν, taking the origin as the reference point. However,
the equation tells us that the average potential energy for all values ofν on the interval
[0,1] is now zero, giving a new method of comparison for the power potential energies.

The solutions for equation (1.1) make several quantum problems more tractable:

(a) The system with a power potential in an infinite well. The potential energy is
defined as

V (y)= y2ν−2, y ∈ [0, y0],
V (y)=∞, y ∈ (y0,∞), S(ν)σ (λ; y) = 0.

The solution in the first interval isS(ν)σ (λ; y) and the boundary condition re-
quiresS(ν)σ (λ; y0) = 0.

(b) The system with a power potential in a finite well, which Salter called “soft
potential” problems. The potential energy is defined as

V (y)= y2ν−2, y ∈ [0, y0
]
,

V (y)= y2ν−2
0 , y ∈ (y0,∞

)
.

The solution in the first interval isS(ν)σ (λ; y) and in the second interval is

y1/2Kσ(

√
y2ν−2

0 − λ2 y), the purely imaginary Bessel function of the second
kind. The boundary condition requires the two functions with multiplicative
constants to be continuous aty = y0 and also their derivatives using the same
multiplicative constants must be continuous aty = y0. The eigenvalues lie in
the interval 0< λ2 < y2ν−2

0 .

(c) Another problem [12], where the power potential takes the formz2ν−2,
0� ν � 1, is important enough because of its relation to the hydrogen-like
atom problem to merit detailed discussion on its own. By choosing the units
appropriately, the radial equation becomes

d2T (z)

dz2
+
[
−κ2+ z2ν−2− σ

2− 1/4

z2

]
T (z) = 0, z ∈ [0,∞). (6.2)

LettingT (z) = z(1/2)(1−ν)U(z), followed by choosingy = (κz/ν)ν , transforms
equation (6.2) into a special case of equation (1.1).
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(d) It seems best to organize the discussion of these problems around a canonical
differential equation. In order to parallel Watson’s discussion of the Bessel
functions, an appropriate choice for general investigation of the all of the func-
tions is the equation analogous to Bessel’s equation, i.e.,

d2S(ν)σ (λ; y)
dy2

+
[
λ2+ y2ν−2− σ

2− 1/4

y2

]
S(ν)σ (λ; y) = 0. (6.3)

The series solutions of the equation can be derived using the same method
developed for equation (1.1). The series solutions of (6.3) as well as those
containing logarithms are available from the author.
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